Saved Bookmarks
| 1. |
A square matrix `B` is said to be an orthogonal matrix of order `n` if `BB^(T)=I_(n)` if `n^(th)` order square matrix `A` is orthogonal, then |adj(adjA)| isA. may be `-1` if `n` is evenB. greater than `1` in all casesC. always `1`D. always 1 if `n` is odd |
|
Answer» Correct Answer - A::B `AA^(T)=Iimplies|A|=+-1` `|adj(adjA|=|A|^(n-1)^(2)` |
|