1.

A simple harmonic wave of amplitude `8` units travels along positive x-axis. At any given instant of time, for a particle at a distance of `10 cm` from the origin, the displacement is `+ 6 units`, and for a particle at a distance of `25 cm` from the origin, the displacement is `+ 4` units. Calculate the wavelength.

Answer» Correct Answer - A::B::C::D
`y =A sin (2pi)/(lambda)(vt - x)`
or `(y)/(A) = sin 2pi ((t)/(T) -(x)/(lambda))`
In the first case,
`y_(1) = + 6 , A = 8 , x_(1) = 10cm`
`(6)/(8) = sin 2pi((t)/(T) - (x_(1))/(lambda))`
Here, `y_(1) = + 6 , A = 8 , x_(1) =10 cm`
`:. (6)/(8) = sin 2pi ((t)/(T) - (10)/(lambda))` ...(i)
Similarly in the second case,
`(4)/(8) = sin 2pi((t)/(T) - (25)/(lambda))` ...(ii)
From Eq. (i),
`2pi((t)/(T) - (10)/(lambda)) = sin^(-1) ((6)/(8)) = 0.85 rad`
or `(t)/(T)-(10)/(lambda) = 0.14` ...(iii)
Similarly from Eq. `(ii)`,
`2pi((t)/(T) - (25)/(lambda)) = sin^(-1) ((4)/(8))= (pi)/(6) rad`
or `(t)/(T) - (25)/(lambda) = 0.08` ...(iv)
Substracting Eq. (iv) from Eq. (iii), we get
`(15)/(lambda) = 0.06`
`:. lambda =250 cm`


Discussion

No Comment Found

Related InterviewSolutions