Saved Bookmarks
| 1. |
A particle whose speed is `50ms^(-1)` moves along the line from `A(2,1)` to `B(9,25)`. Find its velocity vector in the from of `ahat(i)+bhat(j)`.A. `(7hat(i)+24hat(j)) m//s`B. `2(7hat(i)+24hat(j))m//s`C. `4(7hat(i)+24hat(j))m//s`D. `5(7hat(i)+24hat(j))m//s` |
|
Answer» `vec(V)= 50(hat(A)B)` `vec(AB)= (9-2)hat(i)+(25-1)hat(j)=(7hat(i)+24hat(j))` `|vec(AB)|= sqrt((7^(2))+(24)^(2))` `hat(AB)= (7hat(i)+24hat(j))/sqrt((7^(2))+(24^(2)))=((7hat(i)+24hat(j)))/(25)` `vec(V)= 50.((7hat(i)+24hat(j)))/(25)= 2(7hat(i)+24hat(j))m//s` |
|