Saved Bookmarks
| 1. |
A liquid is kept in a cylindrical vessel which is rotated along its axis. The liquid rises at the side. If the radius of the vessel is `5 cm` and the speed of rotation is `4 rev//s`, then the difference in the height of the liquid at the centre of the vessel and its sides isA. 8 cmB. 2 cmC. 40 cmD. 4 cm |
|
Answer» Correct Answer - A `vec(v)=alphahat(i)+betathat(j)` `(dvec(v))/(dt)=betahat(j)implies a_("total")=beta` `|vec(v)|=sqrt(alpha^(2)+beta^(2)t^(2))` `a_(t)=(dv)/(dt)=(2beta^(2)t)/(2sqrt(alpha^(2)+beta^(2)t^(2)))` `(a_(t))=(beta^(2)((alphasqrt(3))/(beta)))/(sqrt(alpha^(2)+beta^(2)(alpha^(2)3)/(beta^(2))))=(beta^(2)((alphasqrt(3))/(beta)))/(2alpha)` `a_(t)=(sqrt(3))/(2)beta` `a_("Normal")=sqrt(a_("total")^(2)-a_(1)^(2))=sqrt(beta^(2)-(3beta^(2))/(4))=(beta)/(2)` |
|