1.

A circular section bar is 2.5 m long and has a diameter of 60 mm. When subjected to a compressive load of 30 kN it shortens by 0.20 mm. Determine Young's modulus of elasticity for the material of the bar.

Answer»

Force, F = 30 kN = 30000 N and cross-sectional area A \(\pi\)r2\(\left(\cfrac{60\times10^{-3}}2\right)^2\)

= 2.8274 x 10-3 m2

Stress \(\sigma\) = \(\cfrac FA\) = \(\cfrac{30000}{2.8274\times10^{-3}}\) = 10.61 MPa

Bar shortens by 0.20 mm = 0.00020 m

Stress \(\sigma\) = \(\cfrac XL\) = \(\cfrac{0.00020}{2.5}\) = 0.00008a

Modulus of elasticity, E = \(\cfrac{stress}{strain}\) = \(\cfrac{10.61\times10^6}{0.00008}\)

= 132.6 x 109 = 132 .6 Gpa



Discussion

No Comment Found

Related InterviewSolutions