1.

A bar of thickness 20 mm and having a rectangular cross-section carries a load of 82.5 kN. Determine (a) the minimum width of the bar to limit the maximum stress to 150 MPa, (b) the modulus of elasticity of the material of the bar if the 150 mm long bar extends by 0.8 mm when carrying a load of 200 kN.

Answer»

(a) Force, F = 82.5 kN = 82500 N and cross-sectional area A = (20x)10-6 m2

where x is the width of the rectangular bar in millimetres.

Stress \(\sigma\) = \(\cfrac FA\), from which, A = \(\cfrac F{\sigma}\) = \(\cfrac{82500\,N}{150\times10^6\,pa}\) = 5.5 x10-4 m2 = 5.5 x 10-4 x 106 mm

= 5.5 x102 mm= 550 mm2

Hence, 550 = 20x, from which, width of bar, x = \(\cfrac{550}{20}\) = 27.5 mm

(b) Stress \(\sigma\) = \(\cfrac FA\) = \(\cfrac{200000}{550\times10^{-6}}\) = 363.64 MPa

Extension of bar = 0.8 mm

Strain \(\varepsilon\) = \(\cfrac XL\) = \(\cfrac{0.8}{150}\) = 0.005333

Modulus of elasticity, E = \(\cfrac{stress}{strain}\) = \(\cfrac{363.64\times10^6}{0.005333}\) = 68.2 x 109 = 68.2 GPa



Discussion

No Comment Found

Related InterviewSolutions