Saved Bookmarks
| 1. |
`a, b, c` are sides of a triangle and `a, b, c` are in GP If `log a- log 2b, log 2b-log 3c and log 3c-log a` are in AP then |
|
Answer» a,b,c are sides of triangles `b^2=ac-(1)` A,B,C are in AP `2B=A+C` `2(log2b-log3C)=loga-log2b-logc-loga` `2log((2b)/(3c))=loga/(2b)+log(3c)/a` `log((2b)/(3c))^2=log(a/(2b)*(3c)/a)` `((2b)/(3c))^2=(a)/(2b)*(3c)/(a)` `8b^3=27c^3` `2b=3c-(2)` `b^2=ac` `b=3/2c` `9/4c^2=9c` `9c=4a` `c=4/9a` `2b=3c` `b=2/3a` |
|