1.

`7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)`

Answer» We know, `log_ab = log_xb/log_xa`
So, `7^(log_(3)5) =7^(log_(7)5/(log_(7)3) `
`= (7^(log_(7)5))^(1/log_(7)3)` (As `a^(log_(a)b) = b`)
`=5^((1/log_(7)3)` (As `a^(log_(a)b) = b`)
`= 5^(log_(3)7)` (As `a^(1/log_(b)c) = a^(log_(c)b)`)
So,`7^(log_(3)5) = 5^(log_(3)7)`->(1)
Similarly, we can show that,
`3^(log_(5)7) = 7^(log_(5)3)`->(2)
So, using (1) and (2), we can write our expression as,
`5^(log_(3)7)+7^(log_(5)3)- 5^(log_(3)7)-7^(log_(5)3) = 0`


Discussion

No Comment Found