1.

6. in a circular table cover of radius 32 cm, adesign is formed leaving an equilateraltriangle ABC in the middle as shown inFig. 12.24. Find the area of the designFig. 12.24

Answer»

Let ABC be the eq./\and let o be the centre of the circle of r=32cmArea of circle =πr^2=(22/7×32×32)cm2=22528/7 cm2

Draw OM_|_BCNow, /_ BOM= 1/2×120°=60°So,From /\BOM,we haveOM/OB=cos 60°(1/2)i.e., OM= 16 cmAlso, BM/OB= cos60°(1/2)i.e., BM= 16√3 cmBC = 2 BM =32√3 cmHence, area of /\BOC = 1/2 BC .OM=1/2×32√3×16area of /\ ABC = 3× area of /\ BOC= 3×1/2×32√3×16= 768√3 cm^2Area of design= area of O - area of /\ ABC= (22528/7 - 768√3)cm^2

thanks

and sorry



Discussion

No Comment Found