1.

`2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1},`is equal to`(2x)/(1-x^2)``t(2tan^(-1)x)``tan(cot^(-1)(-x)-cot^(-1)(x))``"tan"(2cot^(-1)x)`

Answer» Let `tan^-1x = alpha => tanalpha = x`
Let `tan^-1x^3 = beta => tan beta = x^3`
Then,
`2tan(tan^-1x+tan^-1x^3) = 2tan(alpha+beta)`
`=2[(tanalpha+tanbeta)/(1-tanalphatanbeta)]`
`=2[(x+x^3)/(1-x(x^3))]`
`=2[(x(1+x^2))/(1-x^4)]`
`=2[(x(1+x^2))/((1-x^2)(1+x^2))]`
`=(2x)/(1-x^2)->(1)`
`=(2tanalpha)/(1-tan^2alpha)`
`=tan2alpha`
`=tan(2tan^-1x)->(2)`
`=tan(2(pi/2-cot^-1x)`
`=tan(pi-2cot^-1x)`
`=tan(cot^-1(-x)-cot^-1(x))->(3)`
From (1),(2), (3), options, `a`,`b` and `c` are correct options.


Discussion

No Comment Found